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1 Introduction

In the previous decade, various exciting investigations have been made on 4d, N = 1 su-

persymmetric gauge theory. In string theory point of view, supersymmetric gauge theory

can be realized as a low energy effective theory on D-branes. The low energy behavior

of supersymmetric gauge theory has been widely analyzed by using gauge/gravity corre-

spondence. In particular, it has been known that the effective superpotential of N = 1

supersymmetric gauge theory with an adjoint chiral superfield and a tree level superpoten-

tial can be evaluated from the gravity theory with flux [1–3] and from the matrix model [4].

These relations have been analyzed in [5–8] field-theoretically.

Recently, some interesting results have been obtained in N = 1 supersymmetric U(N)

gauge theory with the gauge kinetic term which depends on the adjoint chiral superfield,

Im
∫

d2θ Tr τ(φ)WαWα. In [9, 10], it has been shown that the effective superpotential

of such a theory is deformed compared to the theory with constant τ (in [9], a specific

case where N = 2 supersymmetry is spontaneously broken to N = 1 [11, 12] has been

analyzed). Since there are non-renormalizable coupling constants, this theory should have

UV completion. In [13], this theory is obtained as a low energy effective theory on D5-

branes wrapped on S2’s in Calabi-Yau 3-fold. The field-dependent gauge kinetic term is

introduced by the integrals over S2’s of non-trivial B-field flux which holomorphically varies

on the base space (complex plane) of Calabi-Yau. By using geometric transition duality, the

– 1 –



J
H
E
P
0
9
(
2
0
0
9
)
0
6
1

deformed superpotential [9, 10] has been derived from the gravity theory [13]. Also, it has

been argued that the deformation of the effective superpotential leads to the existence of

supersymmetry breaking vacua in some cases of the parameters. (See also [14] for IIA and

M-theory perspectives and [15] for the case with partially broken N = 2 supersymmetry.)

In this paper, we study N = 1 supersymmetric gauge theory with the flavors where the

gauge kinetic term depends on the adjoint chiral superfields. In the first half of the paper,

we analyze N = 1 A-D-E quiver gauge theories. As in [3, 16, 17], N = 1 A-D-E quiver

gauge theories can be obtained as low energy effective theories on D5-branes wrapped

on S2’s in Calabi-Yau 3-folds (and D3-branes in affine case) in IIB string theory. More

precisely, these Calabi-Yau 3-folds are constructed by fibering the non-singular spaces,

which are obtained from the ALE spaces with A-D-E singularity, over the complex plane

t. As in [13] for A1 case, the non-trivial B-field flux which depends on t is turned on in

order to obtain the field-dependent gauge kinetic term.

An interesting result of the string theory construction of A-D-E quiver gauge theories

is that the theory which is obtained by Weyl reflection on a node of the Dynkin diagram (or

equivalently quiver diagram) is equivalent to the original one, due to ambiguities from the

fact that there is no unique way to blow up the singularity. Since the nodes of the Dynkin

diagrams correspond to S2’s, Weyl reflection acts on the gauge kinetic term as well as the

superpotential in the gauge theory. In [3, 18], it has been analyzed, in the constant τ case,

that the theory obtained by Weyl reflection is a dual description (by Kutasov duality [19–

23]), after integrating out the meson fields and the flavors. (See also [24, 25] for the case

with antibranes.)

In the case which we will consider in this paper, the gauge kinetic term is affected

by Weyl reflection. Therefore, we propose an extension of the Kutasov duality: N = 1

supersymmetric U(Nc) gauge theory with an adjoint φ and Nf flavors Q and Q̄, equipped

with the gauge kinetic term where τ(φ) is

τ(φ) =

m∑

k=0

tkφ
k, (1.1)

and a superpotential, has a dual description which is U(nNf − Nc) gauge theory with an

adjoint φ̃, Nf flavors q and q̄ and meson fields, where the gauge kinetic term is

τ̃(φ̃) = t̃0 −
m∑

k=1

tkφ̃
k (1.2)

and the dual superpotential is the same as the one in [19, 21, 22]. In the latter half of this

paper, we will analyze this duality from the field theoretical point of view.

The dual superpotential and the dual gauge kinetic term can be determined by the

consistency of the duality. In particular, a strong constraint is that both theories should

split to decoupled SQCD theories at low energy and there exists a corresponding SQCD

theory in the dual theory which is Seiberg dual [26] to each decoupled SQCD theory in

the original one. The duality map of several operators can also verified by using the above

argument and the generalized Konishi anomaly equations. (See also [27] for a different

analysis of this theory.)
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The organization of this paper is as follows. We introduce N = 1 A-D-E quiver gauge

theories with the gauge kinetic terms which depend on the adjoint chiral superfields, pro-

moting the gauge coupling constants τi to the field-dependent functions τi(φi), in section 2.

We will show that the classical equations of motion reduce to the same vacuum equations

as those in the theories with constant τi. In section 3, we construct such theories in the

framework of superstring theory. We then consider a duality: Weyl reflection on A-D-E

nodes in section 4. We will see that this induces a non-trivial action on the gauge kinetic

term as well as the superpotential. In section 5, we consider a non-trivial check of the

duality proposal. Finally, we will analyze the duality map of the operators, in section 6.

2 A-D-E quiver gauge theories

In this section, we introduce N = 1 A-D-E quiver gauge theories. Throughout this paper,

we consider the case where the gauge kinetic term depends on the adjoint chiral superfields.

This is an extended version of the quiver gauge theories considered in [3, 16, 17].

These theories are considered as a deformation of N = 2 A-D-E quiver gauge theories

whose gauge groups are
∏

i U(Ni) and each gauge factor corresponds to each node of the

quiver diagrams. The quiver diagrams are expressed by the Dynkin diagrams of non-affine

or affine G = A,D,E groups. In terms of N = 1 superfields, N = 2 quiver gauge theory

consists of the vector superfields Vi (or the field strength superfields Wα
i ), the adjoint

chiral superfields φi and the matter chiral superfields Qij and Qji which are respectively

in the bi-fundamental representations (Ni, N̄j) and (N̄i, Nj) of U(Ni) × U(Nj) groups. (i

label the nodes of the quiver diagram.) We consider the case where the prepotential which

determines the N = 2 classical Lagrangian has higher order terms, that is,

Fi(Ψi) =
∑

k=0

ti,k
(k + 1)(k + 2)

Ψk+2
i , (2.1)

where Ψi are the N = 2 vector superfields which contain φi and Wα
i and ti,k are complex

parameters. In N = 1 superspace formalism, this leads to the field-dependent gauge

kinetic term

∑

i

Im

∫
d2θ Tr τi(φi)W

α
i Wiα, (2.2)

and also the Kähler terms. Here τi are related with the prepotentials as 2τi(x) = F ′′
i (x).

We add the superpotentials Wi(φi) which break N = 2 supersymmetry to N = 1. We

will choose these superpotentials to be polynomials of the same degree n+1, for simplicity.

Therefore, the holomorphic part of the Lagrangian is

∑

i


Im

∫
d2θ Tr τi(φi)W

α
i Wiα +

∫
d2θ


Tr

∑

j

sijQijQjiφi − Tr Wi(φi)


+ h.c.


 , (2.3)

where sij is the intersection matrix of i-th and j-th nodes, which is zero if the nodes are not

linked and ±1 if linked (and they also satisfy sij = −sji). In the affine case, the following
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condition for the superpotentials:

r∑

i=0

diWi(x) = 0 (2.4)

should be satisfied (where di are the Dynkin indices), if we geometrically engineer this

theory [16]. In the non-affine case, there is no restriction on the superpotentials. Note that

in the case where ti,k = 0 for k > 0, i.e. constant τi case, these theories reduce to the ones

analyzed in [3, 16, 17].

2.1 Classical equations of motion

The solution of the classical equations of motion in the case where ti,k = 0, for k > 0

(constant τi case) has been derived in [16]. In non-zero ti,k case, the equations of motion

are slightly complicated, but reduce to the same conditions as those in [16]. Let us see this

in this subsection.

First of all, it is easy to see that the F-term equations are not changed compared to the

case with constant τi. In fact, the gauge kinetic term which depends on the adjoint chiral

superfields induces an additional term, ∂φi
τi(φi) multiplied by the fermion bilinear, in the

F-term equations with respect to φi. However, the fermion does not get an expectation

value in the classical vacua which we are interested in. Therefore, this term does not

contribute to the solution.

On the other hand, the equations of motion with respect to Da
i (where a = 1, . . . , N2

i

label the gauge indices of U(Ni) gauge group) lead to

Da
i =

i

2
(fi)

a
bcφ̄

b
iφ

c
i − (Imτi(φi)

−1)ab


Tr

∑

j

sij(Q
†
ijt

i
bQij − Qjit

i
bQ

†
ji) + h.c.


 = 0, (2.5)

where (fi)
a
bc and tia are the structure constants and the generators in the fundamen-

tal of U(Ni). Each matrix (Imτi(φi)
−1)ab is defined as an inverse of N2

i × N2
i matrix

Tr(Imτi(φi)t
i
at

i
b). While we have non-trivial factors (Imτi(φi)

−1)ab in (2.5) compared to

the case with constant τi (in this case, the factors are proportional to δab), (2.5) results in

∑

j

sij(QijQ
†
ij − Q†

jiQji) + h.c. = 0, (2.6)

which are the same D-term conditions as those in the constant τi case. This can be seen

as follows. We are interested in the vacua where the scalar fields get the diagonal vev,

i.e. non-Cartan parts of 〈φi〉 are zero. Under these, the first term of (2.5) is zero. Since

det(Imτi(φi)
−1)ab 6= 0, the solution is trivial and we obtain (2.6).

We have shown that the vacuum conditions following from the equations of motion are

the same as those in [16]. Therefore, the structure of the classical vacua is also same. So,

we only explain these here.

For the non-affine case, the solutions of these equations are specified in terms of the

positive roots ρK [16], where K = 1, . . . , R+ with 2R+ + r = |G| and r is the rank of G.
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In terms of the simple roots ei, the positive roots can be written as

ρK =

r∑

i=1

ni
Kei, (2.7)

where ni
K are some positive integers. The equations of motion reduce to the

following equations

W ′
K(x) =

∑

i

ni
KW ′

i (x) = 0. (2.8)

Each of these equations has n roots for each positive root ρK because we have chosen

every superpotential is polynomial of degree n + 1. We denote these roots as x = a(p,K)

where p = 1, . . . , n. Then, a supersymmetric vacuum is given by the value of a(p,K) with

multiplicities M(p,K) ≥ 0 which satisfy

Ni =

R+∑

K=1

n∑

p=1

M(p,K)n
i
K. (2.9)

Furthermore, the gauge group is broken as
∑

i

U(Ni) →
∑

K

∑

p

U(M(p,K)), (2.10)

by Higgsing.

For the affine case, we have one additional node in quiver diagram and the gauge group

is
∑r

i=0 U(Ni) where U(N0) gauge group corresponds to that node. The classical vacua are

similarly specified by the positive roots as above [16].

3 Geometric construction

The above gauge theories can be realized as low energy effective theories on D5-branes

wrapped on 2-cycles of Calabi-Yau 3-folds in the non-affine case and additional D3-branes

in the affine case. These Calabi-Yau 3-folds are constructed by non-trivially fibering the

ALE spaces with A-D-E singularity over the complex plane. The important difference

between the quiver gauge theory constructed above and the one in [3, 16] is the gauge

kinetic term. As considered in [13] for A1 case, the field dependent gauge kinetic term

can be engineered geometrically by introducing the non-trivial B-field depending on the

complex plane which is the base space of Calabi-Yau 3-fold.

We consider the ALE spaces with A-D-E singularity at the origin, which can be viewed

as the hypersurfaces f(x, y, z) = 0 with, e.g. for Ar singularity,

f = x2 + y2 + zr+1, (3.1)

where x, y, z ∈ C. By deforming these by relevant deformations, we obtain non-singular

spaces, whose defining equations are, in Ar case,

f = x2 + y2 +

r+1∏

i=1

(z + ti),

r+1∑

i=1

ti = 0, (3.2)

– 5 –
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where ti are deformation parameters and there are r independent classes of non-vanishing

S2’s. These classes intersect according to the corresponding A-D-E Dynkin diagrams. The

holomorphic volumes of S2’s are defined by integrals of the holomorphic 2-form ω = dxdy/z

as αi =
∫
S2

i
ω. These αi are simply related to ti in (3.2) by, in Ar case,

αi = ti − ti+1. (3.3)

For G = D,E cases, the constructions are similar to the above [16].

We consider the fibrations of these spaces over the complex plane. We denote the

coordinate of this plane as t. If there exists D5-branes wrapping on the above S2
i and

occupying the R1,3 direction, we obtain 4d non-affine A-D-E quiver gauge theories as low

energy effective theories on the D5-branes, whose field contents are the same as those in

section 2. If we include the D3-branes occupying R1,3 direction, the gauge theory becomes

the affine quiver gauge theory [3, 16, 28]. Note that since t plane is orthogonal to the

S2’s on which D5-branes wrap, it parametrizes the positions of the D-branes. Thus, t

corresponds to the vacuum expectation value of the adjoint chiral superfield on the D-

brane world volume.

In type IIB string theory, there are NSNS field BNS and RR field BR. Geometrically,

the complexified gauge coupling of each gauge factor of the quiver gauge theory corresponds

to the integral over corresponding S2
i of Calabi-Yau 3-fold:

(
θ

2π
+

4πi

g2
Y M

)

i

=

∫

S2
i

(
BR +

i

gs

BNS

)
. (3.4)

Note that we have set the Kähler parameters to zero: ri ≡
∫
S2

i
k = 0 where k is the Kähler

form. As in [3, 16], if the background B-fields do not have any t-dependence, the above

quantities are constants and denote the complexified gauge coupling constants. On the

other hand, if the background B-fields depend on t as in [13], we obtain

τi(t) ≡

(
θ

2π
+

4πi

g2
Y M

)

i

(t) =

∫

S2
i

(
BR(t) +

i

gs

BNS(t)

)
, (3.5)

which produce the field-dependent gauge kinetic term of the effective theory on the D-

branes, as in section 2. The point is that in order not to break the N = 2 supersymmetry,

B-fields should holomorphically depend on t [29]. Indeed, the dual IIB supergravity solution

of this brane set-up, which has N = 2 supersymmetry in 4d, can be obtained assuming

that the dilaton is constant. Generically, t-dependent B-fields induce the source term in

the dilaton equation of motion. However, such a source term vanishes in the case with

holomorphically t-dependent B-fields [29]. Therefore, the dilaton remains constant in this

case and N = 2 supersymmetry is not broken.

The superpotentials can be turned on by considering the non-trivial fibration of the

ALE space over t-plane, promoting αi (3.3) to be dependent on t: αi = αi(t). These αi

give the superpotential W ′
i (z) = αi(z). We only consider the non-monodromic fibration

where αi are the single-valued functions of t as it leads to the single trace functions Wi(φi)

in section 2. Also, we choose all the degrees of the superpotentials to be n + 1. In this

– 6 –
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case, there are n points in t plane for each positive root ρK (2.7) where the holomorphic

volume becomes zero

W ′
K(t) ≡

r∑

i=1

ni
KW ′

i (t) = 0. (3.6)

These equations correspond to the conditions for the supersymmetric vacua and are same

as those obtained in the gauge theory (2.8). The roots of (3.6) are expressed as t = a(p,K)

where p = 1, . . . n. As noted above, these values correspond to the positions of D-branes

and, therefore, the vacuum expectation values of φi.

Therefore, we have geometrically engineered the N = 1 A-D-E quiver gauge theories

with the field-dependent gauge kinetic term, which have been considered in the previous

section. This construction is a simple generalization of A1 case [13] to other quiver cases.

Now we will comment on an important point which arises from the non-trivial fields

background. Note that the background B-fields (3.5) and the positions of D-branes a(p,K)

determine the classical gauge coupling constant of each gauge factor U(M(p,K))

(
4π

g2

)

(p,K)

=
r∑

i=1

ni
KImτi(a(p,K)). (3.7)

The crucial point is that, in contrast to the case in [3], these quantities could be negative

for generic choice of the background fields and the superpotentials. This implies that the

field theoretical description is ill-defined in that case, but from the string theory point of

view, the case where some of the squared gauge coupling constants are negative arises from

antibranes wrapping on the corresponding S2’s.1

4 Duality in string theory

As considered in [3], there are two types of duality in the above theories. The one is the

geometric transition duality [1] and the other one corresponds to Weyl reflection of A-D-E

groups. In this paper, we only consider the latter type.

Weyl reflection about the simple root ei0 of A-D-E group can be viewed as the following

action on the simple roots:

ei → ei − (ei · ei0)ei0 , (4.1)

where the inner product of the simple roots is normalized as follows: ei ·ei0 are 2 for i = i0,

−1 for i connected with i0 node and 0 for the other i. In the Calabi-Yau geometry, this

corresponds to the change of S2’s and leads to the following action on τi and the polynomial

parts of the superpotential:

τi(φi) → τi(φi) − (ei · ei0)τi0(φi), Wi(φi) → Wi(φi) − (ei · ei0)Wi0(φi). (4.2)

1 In A1 case, if all the squared gauge coupling constants are negative, a better field theoretical description

which is supersymmetry breaking model by spurion fields [30, 31] has been proposed in [13].
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The action of the Weyl reflection on the superpotentials are exactly same as those in [3].

But, since the gauge couplings τi are polynomials of φi, the higher order terms in φi are also

affected by the Weyl reflection. This induces non-trivial action on the coupling constants

ti,k in τi. In fact, in the case with constant τi, this reduces to the action on the gauge

coupling constants, as in [3]: (1/g2)i → (1/g2)i − (ei · ei0)(1/g
2)i0 .

The different looking gauge theory obtained by Weyl reflection should be equivalent

to the original one from the string theory perspective [3]. This is due to ambiguities which

come from the fact that there is no unique way to blow up the singularity and we can

determine a quiver gauge theory up to Weyl group action. Since the total brane charge

must be conserved, the ranks of the gauge groups after the transition are related with the

original ranks as

∑

i

N ′
ie

′
i =

∑

i

Niei. (4.3)

Hence, the ranks of the gauge groups are changed under the Weyl reflection about ei0 as

N ′
i0

= Nf − Ni0 and N ′
i = Ni for i 6= i0 where Nf is the number of flavors of U(Ni0)

gauge theory when the other gauge symmetries are considered as flavor symmetries and

Nf ≡
∑

i6=i0
(−ei · ei0)Ni. Note that the number of flavors is not changed under the

Weyl reflection.

As discussed in [3], this kind of duality can be considered as N = 1 electric-magnetic

duality [19–22, 26, 36] in the framework of the gauge theory. (See also [32–35] for related

approaches.) However, as seen above, the duality induces the non-trivial action on the field-

dependent gauge kinetic term. This is a first example for the electric-magnetic duality in

the case with the field dependent gauge kinetic term. We will call this as extended electric-

magnetic duality. Fortunately, string theory has suggested that such a duality exists. We

will check this duality field-theoretically in the subsequent sections.

Before going to next, let us see the action on the superpotentials and on τi more

explicitly. First of all, the action on the superpotentials (4.2) can be written as

W ′
i (φi) =





−Wi(φi), for i = i0,

Wi(φi) + Wi0(φi), for i connected with i0,

Wi(φi), for the other i.

(4.4)

Also, for the coefficients of the gauge kinetic terms, Weyl reflection acts as

τ ′
i(φi) =





−τi(φi), for i = i0,

τi(φi) + τi0(φi), for i connected with i0,

τi(φi), for the other i,

(4.5)

Let us concentrate on the gauge theory on the i0-th node. If we treat the gauge symmetries

of the linked nodes as the weakly gauged flavor symmetries, we obtain U(Ni0) gauge theory

with a superpotential

W =

n∑

k=1

gk

k + 1
Tr φk+1 + trQ̄φQ + trmQ̄Q, (4.6)

– 8 –
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where Q and Q̄ are Nf fundamental and anti-fundamental superfields. The symbol tr

denotes the trace over the flavor indices. These come from the bi-fundamental superfield

connecting i0-th node with the neighboring nodes. The mass term for Q and Q̄ is due

to φi′Qi′i0Qi0i′ term of the neighboring nodes by giving a vev of φi′ . Also, let the gauge

kinetic term of this theory be

Tr τi0(φ)WαWα =

n∑

k=0

tk Tr(φkWαWα), (4.7)

where we have simplified the notation of the coupling in τi0 as ti0,k ≡ tk.

The Weyl action changes the gauge group to U(Nf − Ni0) (Nf ≡
∑

i6=i0
(−ei · ei0)Ni)

and the superpotential (4.6) to

W̃ = −
n∑

k=1

gk

k + 1
Tr φ̃k+1 +

n∑

k=1

gk

k + 1
trmk+1 + trq̄φ̃q + trmq̄q, (4.8)

where φ̃ is an adjoint field of U(Nf − Ni0) gauge group and q and q̄ are the Nf funda-

mentals and anti-fundamentals. The minus sign of the first term reflects the Weyl action

on the superpotential Wi0 (4.4). The second term comes from the Weyl action on the

superpotentials of the nodes linked to i0 node. (The trace of this term is taken over the

flavor indices.) Furthermore, the gauge kinetic term of the dual theory becomes

−
n∑

k=0

tk Tr(φ̃kW̃αW̃α), (4.9)

where W̃α is the field strength superfield of the dual theory.

In the theory corresponding to a node connected with i0-th node, as noted above, the

dual superpotential of this theory contributes to the second term of (4.8) because the Weyl

reflection induces an additional term Wi0(φ̃i) (4.4) where φ̃i is an chiral superfield of this

dual theory. On the other hand, the gauge kinetic term is affected as follows:

τi(φi) → τi(φ̃i) + τi0(φ̃i) = τi(φ̃i) +

n∑

k=0

tkφ̃
k
i , (4.10)

as easily extracted from (4.5).

5 Extended electric-magnetic duality

We have seen that the string theory construction has suggested an extension of N = 1

electric-magnetic duality to the case where the gauge kinetic term depends on the adjoint

chiral superfields. In what follows, we concentrate on a particular node of the quiver and

consider the duality from field-theoretical point of view.

Let us specify the model. Consider N = 1, U(Nc) gauge theory with an adjoint chiral

superfield φ and Nf fundamental and anti-fundamental superfields Q and Q̄, and also with

a gauge kinetic term which depends on the adjoint chiral superfield:
∫

d2θ Tr τ(φ)WαWα, τ(φ) =

m∑

k=0

tkφ
k, (5.1)
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and a superpotential (4.6)

W =

n∑

k=1

gk

k + 1
Tr φk+1 + trQ̄φQ + trmQ̄Q. (5.2)

Without loss of the generality, the mass matrix m can be chosen to be diagonal. We will use

the indices f = 1, . . . , Nf to label the flavors. In this notation, the diagonal components

of the mass matrix are written as mf .

The vacua of this theory can be divided into two types: confining and Higgs vacua.

Classically, the confining vacua correspond to the vacuum expectation values such that

〈Q〉 = 〈Q̄〉 = 0 and

〈φ〉 = diag(a1, a2, . . . , aN ), (5.3)

where ai are determined from the solutions of the F-term equation:

W ′(x) ≡ gn

n∏

i=1

(x − ai) = 0. (5.4)

Note that the other terms contributing to the F-term equation vanish in these vacua.

Indeed, as we have seen in the quiver case, the gauge kinetic term, τ(φ)WαWα, produces

an additional term in the F-term equation such as ∂φτ(φ)λαλα where λα is the gluino, but

this term vanishes because we are interested in the vacua where the vacuum expectation

values of the fermions are zero.

The Higgs vacua correspond to the case where some of the diagonal elements of 〈φ〉

are equal to the mass parameters and Q and Q̄ have non-zero vacuum expectation values

which are determined from the F-term equation:

(W ′(φ))ij +
∑

f

Qf
j Q̄if = 0, (5.5)

where i, j = 1, . . . , N are the gauge indices. As above, the gauge kinetic term does not

contribute to the classical equation (5.5).

In subsection 5.1, we begin to consider the case without Q̄φQ and mQ̄Q terms. In this

case, the flavors are massless and, after integrating out the adjoint fields, the theory splits

into a set of the decoupled SQCD theories with the massless flavors. Therefore, the stable

vacua exist if [21]

Nc

n
≤ Nf . (5.6)

We will see the dual description of the above theory, after reviewing the constant τ case.

Then, we will turn to the case with full superpotential (5.2) in subsection 5.2.

5.1 Single trace superpotential case

We consider the case where the superpotential is

W =

n∑

k=1

gk

k + 1
Trφk+1. (5.7)

– 10 –
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φ Wα Q (or Q̄) gk Λ2Nc−Nf

U(1)R 2 1 0 −2k 2(2Nc − Nf )

U(1)J 0 1 1 2 0

Table 1. U(1) charges of the electric fields and the parameters.

φ̃ W̃α q (or q̄) Mℓ gk µ Λ̃2Ñc−Nf

U(1)R 2 1 (n−1)(Nc−Ñc)

Ñc
2(ℓ − 1) −2k −2+

(n−1)(Nc−Ñc)

Ñc
4Ñc − 2Nf+

2Nf (n−1)(Nc−Ñc)

Ñc

U(1)J 0 1 Nc

Ñc
2 2 1 + Nc

Ñc

2Nf (Nc−Ñc)

Ñc

Table 2. U(1) charges of the magnetic fields and the parameters.

We first review the case where τ is constant, i.e. tk = 0 for k > 0. In this case, the dual

description of the theory has been obtained in [19, 21, 22], which is U(Ñc) (Ñc = nNf −Nc)

gauge theory with Nf fundamental and anti-fundamental superfields q and q̄, gauge singlet

superfields Mi (i = 1, . . . , n) and an adjoint chiral superfield φ̃. The singlet fields Mi are

identified with the meson superfields in the original theory as

Mi = Q̄φi−1Q, i = 1, . . . , n. (5.8)

It is not necessary to introduce the other meson fields corresponding to Q̄φℓQ (ℓ > n), since

such fields can be eliminated by the chiral ring relation. In addition, the superpotential of

the dual theory is [22]

W̃ = −
n∑

k=1

gk

k + 1
Tr φ̃k+1 +

1

µ2

n∑

k=1

gk

k∑

i=1

Miq̄φ̃
k−iq, (5.9)

where a parameter µ has been introduced in order for the dimension of the second term

to be correct. This duality is a generalization of the electric-magnetic duality (Seiberg

duality) in N = 1 SQCD [26] to the case with an adjoint chiral superfield and a tree level

single trace superpotential. Below we refer to the original and dual theories as electric and

magnetic theories respectively.

The global symmetries of both theories are the same: there is SU(Nf ) × SU(Nf ) ×

U(1)R × U(1)J symmetry. The U(1) charges of the fields (and the parameters) of the

electric theory are in table 1, where Λ is the dynamical scale of the electric theory and

the superspace coordinate θ also has charge 1. Note that we have allowed the coupling

constants gk and tk transform non-trivially, as U(1)R and U(1)J become the symmetries

with the superpotential and the gauge kinetic term. Also, the charges of the fields of the

magnetic theory are in table 2, where Λ̃ is the dynamical scale of the magnetic theory. A

non-trivial check of this duality is to compare the ’t Hooft anomalies of the theories. It has

been shown that they perfectly match in the case with the truncated superpotential [21].
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An important ingredient of N = 1 duality is the matching relation of the dynamical

scales. In the case here, the relation is

Λ2Nc−Nf Λ̃2Ñc−Nf = g
−2Nf
n µ2Nf . (5.10)

One can easily check that this relation is consistent with the above charge assignment.

Also, in [22], it has been shown that this is consistent with the deformations of the theory

by the mass terms of the flavors.

It is worth noting that, on general grounds, the coefficients of Tr φ̃k+1 and Miq̄φ̃
k−iq in

the magnetic superpotential are generic functions of gk. However, we can fix these coeffi-

cients as in (5.9). First of all, in the electric theory, according to (5.3), the gauge symmetry

is broken to
∏n

i=1 U(ri) where
∑

i ri = Nc. (ri denote the number of the eigenvalues of

〈φ〉 which are equal to ai.) Supposing that the underlying U(Nc) gauge theory is weakly

coupled at the mass scale which is specified by the above superpotential, the theory splits

in the low energy into a set of decoupled SQCD theories with U(ri) gauge groups and Nf

flavors.2 In the dual theory, the coefficients of Tr φ̃k+1 have been fixed such that the mag-

netic superpotential has the same critical points ai as those in the electric theory. Then,

we observe a similar gauge symmetry breaking pattern: U(nNf − Nc) →
∏

i U(r̃i). The

claim is that r̃i = Nf − ri,
3 in order to obtain one-to-one correspondence between each

U(r̃i) SQCD theory and each of the decoupled SQCD theories in the electric theory under

Seiberg duality [26].4 Also, the magnetic theory should split to U(Nf − ri) SQCD theories

with Nf flavors and mesons, as the electric theory does. This determines the coefficients

of Miq̄φ̃
k−iq and leads to (5.9) [22].

Magnetic gauge kinetic term. We now turn to the analysis of the gauge kinetic term.

We first note that inclusion of the φ-dependent part of τ does not change the structure of the

classical chiral ring. The classical chiral ring relations, i.e. a set of constraints on the gauge

invariant operators follows from the F-term equation (and a constraint on characteristic

polynomial: f(φ) = 0 with f(x) = det(x−φ)). Indeed, as we have seen above, τ(φ)WαWα

term does not affect the classical solution. On the other hand, the quantum chiral ring is

modified by the existence of the field dependent part of τ because the gluino confines in

the confining vacua and leads to the non-zero vacuum expectation value of 〈λαλα〉. We

will see this in next section by analyzing the generalized Konishi anomaly equations.

Now, consider the magnetic superpotential. In general, it could depend on tk as well

as gk. Recall however that the magnetic superpotential has been determined such that

it has the same critical points as those of the electric theory and it is consistent with the

decoupling of the SQCD theories in the magnetic theory. This process can be applied to the

case with the field-dependent gauge kinetic term: if the magnetic superpotential depends

on tk, we can no longer obtain the same critical points. Also, tk-dependent Miq̄φ̃
k−iq terms

2This is the case where all the roots of (5.4) are different from each other. In the case where some of ai

coincide, i.e. W ′ =
Qr

i=1
(x − ai)

ni (r < n), each decoupled theory has a superpotential as Tr φ
ni

i .
3In the case corresponding to the above footnote, the corresponding gauge group is U(niNf − ri).
4In the case corresponding to the above footnotes, we demand that each decoupled theory in the magnetic

theory is related with each decoupled theory in the electric theory by Kutasov duality [19, 21] with the

truncated superpotential
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obviously make decoupled SQCD theories to couple each other. Therefore, the magnetic

superpotential cannot depend on tk.

On the other hand, the gauge kinetic term of the magnetic theory can be written

generally as

n∑

k=0

t̃k Tr φ̃kW̃αW̃α, (5.11)

where t̃k are some functions of the parameters in the electric theory, which relate the

coupling constants of the electric theory with those of the magnetic theory. As the coupling

constants in the magnetic superpotential have been fixed such that the magnetic theory

correctly behaves as the dual of the original one, we have to choose the correct form of the

functions t̃k(t, g). We will see below that this is simply

t̃k = −tk, (5.12)

for k = 1, . . . ,m. The lowest coupling constant, i.e. t̃0, can also be determined from the

matching relation of the dynamical scales (5.13).

Let us see (5.12) is indeed the case. We first consider the matching relation of the

dynamical scales of the electric and magnetic theories. As we have seen above, the matching

relation in the case with constant τ is (5.8)

Λ2Nc−Nf Λ̃2Ñc−Nf = g
−2Nf
n µ2Nf . (5.13)

In the case with τ(φ), we can assign U(1)R and U(1)J charges to tk and t̃k as

tk t̃k
U(1)R −2k −2k

U(1)J 0 0

in addition to the charge assignment in table 1 and 2. It follows from the above global

U(1) charges and also the consistency with the mass (of the flavor) deformation as in [22]

that this relation cannot change even if we add the parameters tk and t̃k to the theory.

Therefore, the relation is valid in the case we consider here.

By integrating the massive vector superfields and the massive adjoint field out in both

theories, the matching relation leads to

Λ
3ri−Nf

i Λ̃
3r̃i−Nf

i = (−)Nf−rig
−Nf
n µ2Nf e−2πi(T (ai)+T̃ (ai))

∏

j 6=i

(ai − aj)
−Nf , (5.14)

for each i. We have defined as T (x) = τ(x) − t0 and T̃ (x) = τ̃(x) − t̃0. Λi and Λ̃i are

dynamical scales of U(ri) and U(r̃i) theories (r̃i ≡ Nf − ri), which are defined by the

matching of the gauge coupling constants:

Λ2Nc−Nf = Λ
3ri−Nf

i

e2πiT (ai)

(W ′′(ai))ri

∏

j 6=i

(ai − aj)
2rj , (5.15)
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and the similar equations for the magnetic variables. In (5.15),
∏

j 6=i(ai − aj)
2rj factor

comes from the integration of the massive vector superfields and (W ′′(ai))
ri factor is due

to the massive adjoint field. Furthermore, we add the factor e2πiT (ai) because the gauge

kinetic term depends on the adjoint field.

Finally, we note that the relation (5.14) should be consistent with the decoupling of

the SQCD theories in the electric and magnetic theories at low energy. This implies that

the following relations

Λ
3ri−Nf

i Λ̃
3r̃i−Nf

i = (−)Nf−riµ
Nf

i (5.16)

are satisfied for each decoupled SQCD [26], where µi are the parameters in the mag-

netic superpotentials of U(r̃i) SQCD theories, µ−1
i q̄iqiMi. Since we can show that

g−1
n µ2

∏
i6=j(ai − aj)

−1 = µi as in [22], we therefore obtain

m∑

k=1

tk(ai)
k = −

m∑

k=1

t̃k(ai)
k, (5.17)

which implies t̃k = −tk for k = 1, . . . ,m. In principle, (5.17) could have an additional

integer term. However, such a term must vanish since there is no way to satisfy the

equality with that term. Note that the parameters tk are the values at the energy scale

where the gauge symmetry is broken.

Note also that the argument above is valid only in the region where the gauge cou-

pling constant is small. We will see in section 6.2 that (5.12) can be verified by using a

different method.

5.2 Generic superpotential case

Based on the above argument, let us consider the case with more generic superpotential

which has been appeared in the string theory construction:

W =

n∑

k=1

gk

k + 1
Tr φk+1 + trQ̄φQ + trmQ̄Q. (5.18)

As discussed in [20, 23], by flowing from the theory considered in the previous subsection

or in [22], we can deduce that the dual superpotential becomes

W̃ = −
n∑

k=1

gk

k + 1
Tr φ̃k+1 +

1

µ2

n∑

k=1

gk

k∑

i=1

Miq̄φ̃
k−iq + λM2 + mM1. (5.19)

By the relations (5.9), the last two terms correspond Q̄φQ and the mass deformations.

What we have to check about this superpotential is whether the deformation terms do not

spoil the separation of the SQCD theories or not, as we have discussed in the previous

subsection. But it is obviously trivial since the last two terms have no room to mix the

operators of the different gauge factors.

The analysis of the dual gauge kinetic term is the same as that of the previous subsec-

tion and we do not repeat here. The conclusion is t̃k = −tk. This is exactly same as what

has been expected in the string theory (4.9).
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While we have formulated a magnetic dual, the magnetic superpotential (5.19) is dif-

ferent from the one expected from the string theory duality (4.8). In fact, the dual theory

obtained by Weyl reflection in string theory does not include the meson fields and the gauge

groups are also different: U(Nf − Nc) in the stringy dual theory, and U(nNf − Nc) in the

magnetic theory in present section. However, one can show that the magnetic theory re-

duces to the stringy dual one after integrating out the mesons and (anti-)fundamentals and

Higgsing to U(Nf −Nc) gauge theory as in [3]. As we have already seen, the gauge kinetic

term which depends on the adjoint chiral superfield does not affect the classical equations

of motion. Therefore, the discussion is the same as that in the theory with constant τ .

6 Duality map of the chiral operators

In this section, let us consider the duality map between the chiral operators in the electric

theory and the magnetic ones. First of all, we consider the operators TrWαWα (and

Tr W̃αW̃α). As already seen above, the matching relations of the dynamical scales of the

decoupled SQCD theories are

Λ
3ri−Nf

i Λ̃
3r̃i−Nf

i = (−)Nf−riµ
Nf

i , (6.1)

for each i. In each U(ri) SQCD theory, the gauge coupling constant receives one-loop

correction and the gauge kinetic term is renormalized as (3ri − Nf ) log(Λi/M)TrWiαWi
α

in the electric theory and (3r̃i − Nf ) log(Λ̃i/M)Tr W̃iαW̃i
α in the magnetic theory. If

we take a derivative with respect to log Λi and use (5.14) as in [22, 36], we obtain the

following relations:

TrU(ri)W
iαWi

α = −TrU(r̃i)W̃
iαW̃i

α, (6.2)

for each i. These imply that the gauge coupling constant of each decoupled SQCD theory

in the electric theory is different by sign from the magnetic one.

To check the other relations in terms of more complicated operators, it is convenient

to use the generalized Konishi anomaly equations, as in [37] for the constant τ case. Thus,

we first derive these equations in subsection 6.1. Then, we will consider the duality map

of the operators in subsection 6.2 and 6.3.

6.1 Generalized Konishi anomaly equations

Let us derive the generalized Konishi anomaly equations in the electric and magnetic

theories. We define the generating functions of the one-point functions in the electric

theory as

R(z) = −
1

64π2

〈
Tr

WαWα

z − φ

〉
,

T (z) =

〈
Tr

1

z − φ

〉
,

M(z)f
′

f =

〈
Q̄f

1

z − φ
Qf ′

〉
, (6.3)
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where we have ignored the fermionic one-point function. The generalized Konishi anomaly

equations in terms of these variables are:5

R(z)2 =

[
W ′(z)R(z)

]

−

,

2R(z)T (z) =

[
W ′(z)T (z)

]

−

+ 32π2i

[
τ ′(z)R(z)

]

−

+ M(z),

−δf ′

f R(z) =

[
M(z)f

′

f (z + mf ′)

]

−

, (6.4)

which can be obtained by generalizing the arguments in [6–10]. In the last equation, the

flavor index f ′ is not contracted.

In the magnetic theory, we can also define

R̃(z) = −
1

64π2

〈
Tr

W̃αW̃α

z − φ̃

〉
,

T̃ (z) =

〈
Tr

1

z − φ̃

〉
,

M̃(z)f
′

f =

〈
q̄f

1

z − φ̃
qf ′

〉
. (6.5)

In terms of these, the anomaly equations can be obtained as

R̃(z)2 = −

[
W ′(z)R̃(z)

]

−

,

2R̃(z)T̃ (z) = −

[
W ′(z)T̃ (z)

]

−

− 32π2i

[
τ ′(z)R̃(z)

]

−

+

[
M̃(z)A′(z)

]

−

,

−δf ′

f R̃(z) =

[
M̃(z)f

′′

f A(z)f
′

f ′′

]

−

, (6.6)

where

A(z) =
1

µ2

n∑

k=1

gk

k∑

i=1

Miz
k−i. (6.7)

Note that Miq̄φ
k−iq terms in the magnetic superpotential do not contribute to the first

equation of (6.6) because the terms with q̄Wα and Wαq are zero in the chiral ring.

Another important point of these anomaly equations (6.4) and (6.6) is that the φ(or

φ̃)-dependence of the gauge kinetic term does not affect the anomaly equation for R(z) (or

R̃(z)), as noted in [9, 10]. In other words, tk and t̃k do not enter in those equations. This

is crucial in the analysis in subsequent subsections.

5 These anomaly equations were derived also in [27] recently.
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6.2 Duality map of Tr φkWαWα operators

In this subsection, we consider the operators Tr φkWαWα (Tr φ̃kW̃αW̃α in the magnetic

theory). We expect from the argument in previous section that the following duality map

of the operators are satisfied:

Tr φkWαWα = −Tr φ̃kW̃αW̃α. (6.8)

We will check this relation in the vacuum. It should be noted that in the case without

Q̄φQ and mQ̄Q terms, the argument in the rest of this section might be invalid. More

precisely, we obtain 〈Tr φkWαWα〉 = 0, as we can see from the anomaly equation for

M(z). This is because the flavors remain massless at IR. Therefore, we will consider the

full superpotential (5.2) below.

Since 〈Tr φkWαWα〉 = 0 in the classical vacuum, the classical analysis cannot be non-

trivial check of the duality map (6.8). However, they could have non-zero expectation

values in the quantum vacuum, as can be seen from the anomaly equations. Indeed, we

can relate R(z) to R̃(z) by using the generalized Konishi anomaly equations and this will

be a non-trivial check of (6.8). Let us see this below.

The generalized Konishi anomaly equations (6.4) and (6.6) for R(z) and R̃(z), can be

rewritten as

R(z)2 = W ′(z)R(z) +
f(z)

4
, R̃(z)2 = −W ′(z)R̃(z) +

f̃(z)

4
, (6.9)

where f(z) and f̃(z) are the polynomials of degree n − 1. These equations can be easily

solved as

R(z) =
1

2

(
W ′(z) −

√
W ′(z)2 + f(z)

)
, R̃(z) =

1

2

(
−W ′(z) +

√
W ′(z)2 + f̃(z)

)
,

(6.10)

where the signs of the square roots have chosen to be consistent with the large z behavior

of R(z) and R̃(z). From the above forms, we can see that R(z) and R̃(z) have cuts in the

complex z plane and are, respectively, meromorphic functions on Riemann surfaces Σ and

Σ̃ of genus n− 1: y2 = W ′(z)2 + f(z) and ỹ2 = W ′(z)2 + f̃(z). Let us denote by αi and α̃i

α-cycles of Σ and Σ̃ respectively.

The polynomials f(z) and f̃(z) are completely fixed [6] by

−
1

64π2
〈TrU(ri)W

iαWi
α〉 =

1

2πi

∮

αi

R(z)dz,

−
1

64π2
〈TrU(r̃i)W̃

iαW̃i
α〉 =

1

2πi

∮

α̃i

R̃(z)dz. (6.11)

It follows from these equations and (6.2) that f(z) = f̃(z). Therefore, we obtain R(z) =

−R̃(z), which implies

〈Tr φkWαWα〉 = −〈Tr φ̃kW̃αW̃α〉. (6.12)

Note that this could be an alternative check of the magnetic gauge kinetic term. In-

deed, as we have noted above, Miq̄φ
k−1q terms and the magnetic gauge kinetic term in the
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Lagrangian do not contribute to the anomaly equation for R̃(z). What we have assumed in

the above argument is that the polynomial part of the magnetic superpotential is −W (φ̃)

and the relations (6.2). However, these follows from that the electric and magnetic su-

perpotentials have the same critical points and that both theories split into the decoupled

SQCD theories at low energy. Once we have derived (6.12), we then obtain the following

relations by taking derivatives of the partition functions with respect to tk and t̃k:

∂Z

∂tk
∼ 〈Tr φkWαWα〉 = −〈Tr φ̃kW̃αW̃α〉 ∼ −

∂Z̃

∂t̃k
(6.13)

Since the duality implies Z = Z̃ at least for the holomorphic sector, thus we can conclude

that the magnetic gauge kinetic term is (5.12).

6.3 Duality map of Tr φk operators

Finally, we analyze the operator relations between Tr φk and Tr φ̃k. In the theory with

constant τ , it has been known [22] that the duality map can be written as

Tr φk = −Tr φ̃k +
k

µ2

k−1∑

i=1

Miq̄φ̃
k−1−iq + . . . , (6.14)

where ellipsis denotes the constant term. In [22], these relations have been checked by

substituting the classical vacuum expectation values. Also, they have been analyzed in [37]

by using the generalized Konishi anomaly equations. On general grounds, we can expect

that these relations can be deformed by the term with the operators Tr φ̃kW̃αW̃α and the

terms involving tk, in the case with τ(φ). Let us show below that such terms do not exist

by making use of the generalized Konishi anomaly equations.

The third equations of the generalized Konishi anomaly equations (6.4) and (6.6):

− δf
f ′R(z) =

[
M(z)ff ′(z + mf )

]

−

, − δf
f ′R̃(z) =

[
M̃(z)ff ′A(z)

]

−

(6.15)

imply that the tk-dependence cannot enter in M(z) and M̃(z), since R(z) and R̃(z) are

independent of tk. On the other hand, the second equations of (6.4) and (6.6) are

2R(z)T (z) =

[
W ′(z)T (z)

]

−

+ 32π2i

[
τ ′(z)R(z)

]

−

+ M(z),

−2R(z)T̃ (z) = −

[
W ′(z)T̃ (z)

]

−

+ 32π2i

[
τ ′(z)R(z)

]

−

+

[
M̃(z)A′(z)

]

−

, (6.16)

where we have substituted R(z) = −R̃(z). At this stage, we can see that the field-dependent

gauge kinetic term does affect the quantum chiral ring relation:6 the second terms in the

6The author thanks Ken Intriligator for a useful comment on this point.
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right hand sides denote that T (z) and T̃ (z) are affected by the gauge kinetic terms. Indeed,

in large z, the first equation of (6.16) becomes

〈
W ′(Φ)

〉
−

i

2

〈
τ ′(Φ)WαWα

〉
+

〈
Q̄Q

〉
= 0, (6.17)

and this is the usual F-term equation. In the classical vacua, the second term does not

contribute, but it does in the quantum vacua.

Let us consider the effect of the second terms in (6.16). In the constant τ case, by

the duality map (6.14), the first equation of (6.16) should reduce to the second equation,

as noted above. In the case with τ(φ), since the only difference between the second terms

in (6.16) is the sign, they do not change the duality map (6.14).
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